
A Crash Course in C

GDSC Reading Week Workshop 3



Admin Stuff

- A CSC209 disclaimer
- Getting the demo code

- SSH into the DH2020 Lab machines using the Remote-SSH VSCode extension
- Open terminal (Ctrl + `) in VSCode, and run:

- git clone https://github.com/utmgdsc/2023-c-workshop
- This should download the GitHub repository, and you should have access to the 

files



What is C?

- A statically-typed, compiled programming language
- Developed by Ken Thompson and Dennis Ritchie for UNIX



The Impact of C

- Implementation language of numerous software tools
- All modern operating systems (Linux, Windows, MacOS)
- The Python interpreter
- Java Virtual Machine
- Anything low-level, really

- Influenced numerous other programming languages



Python vs. C

Python

- Runtime:
- Interpreted

- Type System:
- Dynamic, strong

- Paradigm:
- Object-oriented, functional

- Easy to use, beginner-friendly
- Sloooooow

C

- Runtime:
- Compiled

- Type System:
- Static, weak

- Paradigm:
- Structural/Imperative

- Difficult to master, memory 
management is a pain

- Blazing fast



Anatomy of a C Program

Import Statement

Entry Point 
Declaration

Return Value

Return Statement

Print Statement



Control Flow and Data Types

- Conditional Statements
- If-Else, Switch-Case

- Loops
- For and While Loops

- Function Calls
- Type Casting

- Various Flavors of Integers
- Int, unsigned int, long, long long

- Floats and Doubles
- Char (characters)
- Booleans (with a caveat!)
- Arrays
- Structs (create your own type!)
- Pointers
- Strings…?C is a very simple language,

but very hard to master!



Pointers: A Motivating Example

How many bytes do data types use?

- Integers
- Default 4 bytes (32 bits), longs are 8 bytes (64 bits)

- Characters 
- Always 1 byte (8 bits)

- Booleans
- Always 1 byte

- Arrays
- However big the programmer declares them to be
- Size is known at compile time



How Big is a String?

- “Hello World!” has 12 characters, so 12 bytes
- “I like Dan Zingaro’s cows” has 25 characters, so 25 bytes
- A string can be 1 byte, 20 bytes, 420 bytes, 32,000 bytes…

We don’t know how big a string is!

(Rather, strings have arbitrary size that is not always known at compile time)



Pointers (for real this time)

- Stores the memory address of an object
- Rather than the object itself
- “Points” to the object

- Closest analogue: object IDs in Python
- Pointers are 4 bytes (32 bits) or 8 bytes (64 bits), depending on the system
- Indicated by an asterisk * in C

- e.g. int *c declares a pointer (named c) pointing to an integer
- Pointer operators

- ‘&’ (The reference operator)
- ‘*’ (The dereference operator)

- How strings are stored in C!
- char *, or char[]



Strings in Memory

H E L L O ! \0

0x45f24a 0x45f24b 0x45f24c 0x45f24d 0x45f24e 0x45f24f 0x45f250char *string



C’s Memory Model

The Stack (a.k.a the call stack)

- Most sized variables live here
- Integers
- Pointers
- Predefined arrays
- Etc etc.

- Most items get allocated and 
deallocated automatically when a 
function returns

- Size of stack variables cannot be 
changed

The Heap

- Used for storing variables of 
unknown size

- e.g. strings
- Size of heap variables can be 

changed
- Always interacted with through 

pointers
- Must be managed manually by the 

programmer
- The reason why memory 

management is so important!



Memory Management

Memory Allocation (malloc)

- Allocates a block of memory on the heap
- Returns a pointer to the allocated block

- Takes one argument specifying how 
many bytes the programmer wants

- Comes in various flavors:
- calloc - zeroes out the memory before 

being used
- realloc - resizes an existing block of 

memory
- If allocation fails, returns NULL

Memory Deallocation (free)

- Deallocates the memory being 
pointed to by a given pointer and 
frees it up for other use

- Takes one argument, a pointer that 
points to the block of memory to be 
deallocated

- The block to be deallocated must 
have been previously allocated, if not 
bad things happen!



Memory Management Best Practices

- The GOLDEN RULE of Memory 
Management:

- Anything allocated must always be 
freed after use.

- For every malloc there must exist 
one (and only one) free!

- Avoid aliasing
- Avoid dangling pointers

- Any dangling pointers should be set 
to NULL

- Watch out for out-of-bounds errors!

What can go wrong?

- Segfaults
- Out-of-bounds errors

- Use-after-free
- Usually results from aliasing

- Buffer Overflow
- Usually from writing to memory that 

is not allocated
- Security Vulnerabilities!



Structs and Typedefs

Structs

- Allow programmers to create custom 
data types

- Provide ways of grouping related 
data under a single name

- This is done by defining fields within 
a struct

Typedefs

- Allow programmers to create type 
aliases for existing types

- Can be used to redefine existing 
types to a more relevant name, or 
define a struct to use more succinct 
syntax



Pointers and Structs

- Pointers are often used with structs
- C is a pass-by-value language, so pointers allow pass-by-reference

- Common syntax includes:
- struct some_struct *var_name;
- typedef struct somestruct *structptr;
- structptr ptr = malloc(sizeof(some_struct));

- Same memory management rules apply!



Putting It All Together

A Linked List!

- What we will implement:
- Append
- Push
- Remove
- Index



Homework!

- Figure out recursion
- Implement linked list operations recursively
- Implement a recursive fibonacci number calculator

- Implement a dynamic string read function
- Implement a binary search tree
- Implement one of your existing (smaller) projects in C
- Do some reading

- History of C and UNIX
- How a C program is compiled
- How malloc and free work
- “The C Programming Language” by Brian Kernighan



Thank You!

Any Questions?


